联手人机交互专业委员会:“虚拟现实中的具身存在感”术语发布 | CCF术语快线
本期发布术语热词:虚拟现实中的具身存在感 (Virtual Embodiment)
虚拟现实中的具身存在感(Virtual Embodiment)
作者:佟馨(昆山杜克大学)
易鑫(清华大学)
阎裕康(卡内基梅隆大学)
InfoBox:
中文名:虚拟现实中的具身存在感
外文名:Virtual Embodiment
学科:人机交互、虚拟现实、虚拟化身
实质:人在沉浸式虚拟现实环境中对代表其真实身体的虚拟化身及其身份所产生的拥有、自主控制和所处位置的主观感受。
研究背景:
从Jaron Lanier在1980年代在媒体上推广Virtual Reality (VR),虚拟现实, 这一术语到2022年,虚拟现实的发展由于硬件技术的限制几经波折。虚拟现实被普遍定义可以提供听觉、视觉、触觉等感知觉反馈的有计算机模拟出来的可交互的虚拟环境 (Jerald, 2016)。临场感是指当用户处于由沉浸式VR所构建的虚拟世界时,用户接收到虚拟世界中的多通道感知觉实时反馈、感受到身临其境,从而产生认知和心理层面的改变。其中,具身感是临场感的重要组成部分。
具身感 (the sense of embodiment, SoE) 主要探索人对身体的感受和认知,这里的身体是指可以被医学科学和实践的主体和客体 (Gallagher, 2001)。具身感这一概念在哲学领域的探索和发展由来已久,经常被用来探索身体和意识的关系。当下,具身感在哲学、认知心理学、媒介技术/传播学、神经科学、医学等不同领域具有多样的定义。比如在认知心理学领域,Kilteni et al. 认为,虚拟现实中的具身感描述了用户同时产生的在一个身体里、拥有一个身体、并能够控制这个身体的整体感受。Kilteni et al. (2012) 基于虚拟环境中对虚拟身体感受的大量研究,归纳了理论框架:包括用户对身体的拥有感 (sense of ownership, SoO)、对身体的控制感 (sense of agency, SoA)、以及在身体中的位置感 (sense of self-location)。这一具身感的定义和框架被后续研究大量引用并接受。这里,本文作者基于文献给出对虚拟具身感 (virtual embodiment)的理解定义:人在沉浸式虚拟现实环境中对代表其真实身体的虚拟化身及其身份所产生的拥有、自主控制和所处位置的主观感受。
研究概况:
因为人的自我是不能脱离身体而单独存在,所以采用实验的方法来操控人的具身感受是具有挑战的。因而,许多研究科学家尝试采用不同的方法来操控“被认可”的身份的身体一部分作为替代,如橡胶手、假手、镜子反射等方式,来控制人的具身感受。基于经典的橡胶手错觉 (rubber hand illusion, RHI) 实验,许多认知心理学家陆续研究了不同条件下,人对于虚假身体的具身感受并主要测量了人对虚假身体的拥有感,例如人体模型 (Petkova & Ehrsson, 2008)、镜子里的反射 (Ramachandran et al., 2009) 。
约15年前,Slater et al.首次在虚拟现实环境中复制了RHI 的研究,他尝试使被试的注意力脱离自身的身体并完全集中在虚拟的手上,通过为被试提供虚拟手的视觉和触觉刺激使其产生了对虚拟手的拥有感 (Slater et al., 2008, 2010),这一现象被称为虚拟手错觉 (virtual hand illusion, VHI) 或者虚拟身体错觉 (virtual body illusion, VBI)。后续研究陆续证实人们可以从虚拟化身的角度看到虚拟现实中的世界,并感受“拥有”或者“控制”虚拟化身 (Banakou et al., 2013; Gilpin et al., 2014; Bertrand et al., 2018)。之后,科学家们分别尝试操控虚拟手臂和虚拟身体的结构、形状、颜色、大小、和位置等外形或运动等表征,以探索不同的外形和运动表征对于具身感受的影响 (Kilteni et al., 2012; Banakou et al., 2013; Peck et al., 2013)。这些虚拟身体的外形或运动等表征在物理现实中不会出现,甚至可能与我们的真实身体完全不同。实验表明,对虚拟身体的视觉运动操控,可能会影响人的真实生理反应 (Martini et al., 2013; Bergström et al., 2016),甚至还可能会调节被试的行为反应 (Osimo et al., 2015; Seinfeld et al., 2018)。
近年来,除了进一步对于具身感受的意识进行身体和意识关系的研究之外 (Steptoe et al., 2013; Tong et al., 2016),学术界多项研究主要对虚拟具身感受在两个方面进行了应用和研究:(1) 应用心理治疗、康复、和神经科学等领域 (Tarr & Warren, 2002; Martini et al., 2016; Riva et al., 2018; Tong et al., 2020a, 2021),如帮助病人解决慢性疼痛等问题;(2) 转换视角,提高对少数人群或弱势群体的同理心并降低偏见(Tong et al., 2017, 2020b, 2021)。在具身感和痛觉研究领域,Matamala-Gomez et al. 发现观看健康的假手并对其产生具身体验可以抑制体感区域中与疼痛相关的神经活动 (2019),Longo et al. (2012) 此前的神经影像学研究也证明了这一发现。此外,对于不同虚拟身体表征和具身感的研究发现,由外形或运动表征引起的具身感变化和痛觉的变化有显著相关性,而具体的相关关系取决于具体的表征情况,比如,肤色 (Martini et al., 2013)、皮肤透明度 (Martini et al., 2015)、大小尺寸 (Romano et al., 2016) 、外形的真实/抽象程度 (Zanini et al., 2017)、和虚拟身体与真实身体运动的同步异步情况等 (Martini et al., 2014; Zanini et al., 2017)。
在具身感和同理心研究领域,现有研究结果发现虚拟现实中的具身感受允许人更好的“设身处地”的站在别人的视角思考,并降低人们的隐性偏见并提高其同理心 (Petkova & Ehrsson, 2008; Banakou et al., 2013; Cummings & Bailenson, 2015)。具身感被广泛的用于尝试减少性别和种族偏见(Peck et al., 2013; Maister et al., 2015; Banakou et al., 2016; Lopez et al., 2019),此外也被用于降低对儿童群体的隐性偏见 (Banakou et al., 2013) 和改变人在特殊场景下的行为决策 (Rosenberg et al., 2013)。
在人机交互领域,相关研究进一步探索用户维持具身感与“用户-虚拟化身”运动一致性的定量关系(Zhipeng et al., 2022),以及利用用户与虚拟化身的运动不一致性,来实现运动重定向(Eric et al., 2019; Rietzler et al., 2020),物体重量(Samad et al., 2019)和物体触觉(Rietzler et al., 2018)的通感模拟,以及优化用户的交互姿态及相应交互舒适度(Tianren et al., 2022)。
未来展望:
虽然目前的科技手段无法将人从虚拟身体经历的感知觉全方面模拟出来,产业界一直在开发虚拟现实技术相关的各种硬件计算和传感设备,并提高其性能,以提高“技术具身”中技术的质量、让人更自然的通过真实身体拥有和控制虚拟身体,提高用户在各种场景中的具身体验。比如,Noitom, Tesla Suit 和 Hardlight VR等虚拟现实技术公司为了给用户提供更加生动逼真的触觉反馈,研发了全身的触感套装。Meta致力于将用户脸部表情和全身肢体运动情况同步到虚拟身体中,以提高虚拟身体之间的社交效果。与此同时,产业界也积极探索虚拟现实中的具身感对各种产业应用的意义和其可能带来更加积极影响,如游戏、电影、竞技运动、元宇宙等社交娱乐行业,职业技能培训等教育场景,和远程会议等领域。如何在虚拟现实环境中为人构建基于真实甚至超出真实的“技术身体”的具身认知体验,是值得未来学术界和产业界共同探索的一重要研究方向和议题,也会进一步推动所有技术领域中人机交互、人机共生、人机共融的和谐前景。
小结:
本文主要介绍了沉浸式虚拟现实环境中给人带来的最重要感觉,临场感(或存在感),并侧重介绍了具身认知目前在学术界的研究现状和现阶段所遇到的问题,以便未来在人机交互领域中,研究人员可以更好的探索沉浸式虚拟现实环境是如何改变人的认知和行为。
参考文献
[1]Banakou, D., Groten, R., & Slater, M. (2013). Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proceedings of the National Academy of Sciences, 110(31), 12846–12851. https://doi.org/10.1073/pnas.1306779110
[2]Banakou, D., Hanumanthu, P. D., & Slater, M. (2016). Virtual Embodiment of White People in a Black Virtual Body Leads to a Sustained Reduction in Their Implicit Racial Bias. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00601
[3]Bertrand, P., Guegan, J., Robieux, L., McCall, C. A., & Zenasni, F. (2018). Learning Empathy Through Virtual Reality: Multiple Strategies for Training Empathy-Related Abilities Using Body Ownership Illusions in Embodied Virtual Reality. Frontiers in Robotics and AI, 5. https://doi.org/10.3389/frobt.2018.00026
[4]Bergström, I., Kilteni, K. and Slater, M., (2016). First-person perspective virtual body posture influences stress: a virtual reality body ownership study. PloS one, 11(2), p.e0148060.
[5]Cummings, J., & Bailenson, J. (2015). How Immersive Is Enough? A Meta-Analysis of the Effect of Immersive Technology on User Presence. Media Psychology, 19, 1–38. https://doi.org/10.1080/15213269.2015.1015740
[6]Gallagher, S. (2000). Philosophical conceptions of the self: Implications for cognitive science. Trends in Cognitive Sciences, 4(1), 14–21. https://doi.org/10.1016/s1364-6613(99)01417-5
[7]Gilpin, H. R., Bellan, V., Gallace, A., & Moseley, G. L. (2014). Exploring the roles of body ownership, vision and virtual reality on heat pain threshold. European Journal of Pain (London, England), 18(7), 900–901. https://doi.org/10.1002/j.1532-2149.2014.483.x
[8]Jerald, J. (2016). The VR Book: Human-Centered Design for Virtual Reality. Association for Computing Machinery and Morgan & Claypool.
[9]Kilteni, K., Groten, R., & Slater, M. (2012). The Sense of Embodiment in Virtual Reality. Presence, 21(4), 373–387. https://doi.org/10.1162/PRES_a_00124
[10]Longo, M. R., Iannetti, G. D., Mancini, F., Driver, J., & Haggard, P. (2012). Linking Pain and the Body: Neural Correlates of Visually Induced Analgesia. The Journal of Neuroscience, 32(8), 2601–2607. https://doi.org/10.1523/JNEUROSCI.4031-11.2012
[11]Lopez, S., Yang, Y., Beltran, K., Kim, S. J., Cruz Hernandez, J., Simran, C., Yang, B., & Yuksel, B. F. (2019). Investigating Implicit Gender Bias and Embodiment of White Males in Virtual Reality with Full Body Visuomotor Synchrony. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, 1–12. https://doi.org/10.1145/3290605.3300787
[12]Maister, L., Slater, M., Sanchez-Vives, M. V., & Tsakiris, M. (2015). Changing bodies changes minds: Owning another body affects social cognition. Trends in Cognitive Sciences, 19(1), 6–12. https://doi.org/10.1016/j.tics.2014.11.001
[13]Matamala-Gomez, M., Diaz Gonzalez, A. M., Slater, M., & Sanchez-Vives, M. V. (2019). Decreasing Pain Ratings in Chronic Arm Pain Through Changing a Virtual Body: Different Strategies for Different Pain Types. The Journal of Pain: Official Journal of the American Pain Society, 20(6), 685–697. https://doi.org/10.1016/j.jpain.2018.12.001
[14]Martini, Matteo, Perez-Marcos, D., & Sanchez-Vives, M. V. (2013). What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold. Frontiers in Human Neuroscience, 7, 438. https://doi.org/10.3389/fnhum.2013.00438
[15]Martini, M., Perez-Marcos, D., & Sanchez-Vives, M. V. (2014). Modulation of pain threshold by virtual body ownership. European Journal of Pain (London, England), 18(7), 1040–1048. https://doi.org/10.1002/j.1532-2149.2014.00451.x
[16]Martini, Matteo, Kilteni, K., Maselli, A., & Sanchez-Vives, M. V. (2015). The body fades away: Investigating the effects of transparency of an embodied virtual body on pain threshold and body ownership. Scientific Reports, 5, 13948. https://doi.org/10.1038/srep13948
[17]Osimo, S. A., Pizarro, R., Spanlang, B., & Slater, M. (2015). Conversations between self and self as Sigmund Freud—A virtual body ownership paradigm for self counselling. Scientific reports, 5(1), 1-14.
[18]Peck, T. C., Seinfeld, S., Aglioti, S. M., & Slater, M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Consciousness and Cognition, 22(3), 779–787. https://doi.org/10.1016/j.concog.2013.04.016
[19]Petkova, V. I., & Ehrsson, H. H. (2008). If I Were You: Perceptual Illusion of Body Swapping. PLOS ONE, 3(12), e3832. https://doi.org/10.1371/journal.pone.0003832
[20]Ramachandran, V. S., & Altschuler, E. L. (2009). The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain: A Journal of Neurology, 132(Pt 7), 1693–1710. https://doi.org/10.1093/brain/awp135
[21]Romano, D., Llobera, J., & Blanke, O. (2016). Size and Viewpoint of an Embodied Virtual Body Affect the Processing of Painful Stimuli. The Journal of Pain, 17(3), 350–358. https://doi.org/10.1016/j.jpain.2015.11.005
[22]Rosenberg, R. S., Baughman, S. L., & Bailenson, J. N. (2013). Virtual Superheroes: Using Superpowers in Virtual Reality to Encourage Prosocial Behavior. PLoS ONE, 8(1), e55003–e55003.
[23]Slater, M., Perez-Marcos, D., Ehrsson, H. H., & Sanchez-Vives, M. V. (2008). Towards a Digital Body: The Virtual Arm Illusion. Frontiers in Human Neuroscience, 2. https://doi.org/10.3389/neuro.09.006.2008
[24]Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First Person Experience of Body Transfer in Virtual Reality. PLOS ONE, 5(5), e10564. https://doi.org/10.1371/journal.pone.0010564
[25]Seinfeld, S., Arroyo-Palacios, J., Iruretagoyena, G., Hortensius, R., Zapata, L.E., Borland, D., de Gelder, B., Slater, M. & Sanchez-Vives, M.V., (2018). Offenders become the victim in virtual reality: impact of changing perspective in domestic violence. Scientific reports, 8(1), pp.1-11.
[26]Steptoe, W., Steed, A., & Slater, M. (2013). Human tails: Ownership and control of extended humanoid avatars. IEEE Transactions on Visualization and Computer Graphics, 19(4), 583–590. https://doi.org/10.1109/TVCG.2013.32
[27]Tong, X., Kitson, A., Salimi, M., Fracchia, D., Gromala, D. & Riecke, B.E., (2016). Exploring embodied experience of flying in a virtual reality game with kinect. In 2016 IEEE International Workshop on Mixed Reality Art (MRA) (pp. 5-6). IEEE.
[28]Tarr, M.J. & Warren, W.H., (2002). Virtual reality in behavioral neuroscience and beyond. Nature neuroscience, 5(11), pp.1089-1092.
[29]Tong, X., Ulas, S., Jin, W., Gromala, D. & Shaw, C., (2017). The design and evaluation of a body-sensing video game to foster empathy towards chronic pain patients. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare (pp. 244-250).
[30]Tong, X., Wang, X., Cai, Y., Gromala, D., Williamson, O., Fan, B. & Wei, K., (2020a). “I dreamed of my hands and arms moving again”: A case series investigating the effect of immersive virtual reality on phantom limb pain alleviation. Frontiers in neurology, 11, p.876.
[31]Tong, X., Gromala, D., Ziabari, S.P.K. & Shaw, C.D., (2020b). Designing a virtual reality game for promoting empathy toward patients with chronic pain: feasibility and usability study. JMIR serious games, 8(3), p.e17354.
[32]Tong, X., (2021). Bodily resonance: Exploring the effects of virtual embodiment on pain modulation and the fostering of empathy toward pain sufferers (Doctoral dissertation, Communication, Art & Technology: School of Interactive Arts and Technology).
[33]Zanini, A., Montalti, M., Caola, B., Leadbetter, A. G., & Martini, M. (2017). Pain During Illusory Own Arm Movement: A Study in Immersive Virtual Reality. European Medical Journal, 2, 90–97.
[34]Zhipeng Li, Yu Jiang, Yihao Zhu, Ruijia Chen, Ruolin Wang, Yuntao Wang, Yukang Yan, and Yuanchun Shi. 2022. Modeling the Noticeability of User-Avatar Movement Inconsistency for Sense of Body Ownership Intervention. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 2, Article 64 (July 2022), 26 pages.
[35]Rietzler M, Deubzer M, Dreja T, et al. Telewalk: Towards free and endless walking in room-scale virtual reality[C]//Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020: 1-9.
[36]Eric J. Gonzalez, Parastoo Abtahi, and Sean Follmer. 2019. Evaluating the Minimum Jerk Motion Model for Redirected Reach in Virtual Reality. In The Adjunct Publication of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). Association for Computing Machinery, New York, NY, USA, 4–6. https://doi.org/10.1145/3332167.3357096
[37]Samad M, Gatti E, Hermes A, et al. Pseudo-haptic weight: Changing the perceived weight of virtual objects by manipulating control-display ratio[C]//Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 2019: 1-13.
[38]Rietzler M, Geiselhart F, Frommel J, et al. Conveying the perception of kinesthetic feedback in virtual reality using state-of-the-art hardware[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018: 1-13.
[39]Tianren Luo, Zhenxuan He, Chenyang Cai, Teng Han, Zhigeng Pan, and Feng Tian. 2022. Exploring Sensory Conflict Effect Due to Upright Redirection While Using VR in Reclining & Lying Positions. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST '22). Association for Computing Machinery, New York, NY, USA, Article 79, 1–13. https://doi.org/10.1145/3526113.3545692
作者介绍
术语工委及术语平台介绍:
计算机术语审定委员会(Committee on Terminology)主要职能为收集、翻译、释义、审定和推荐计算机新词,并在CCF平台上宣传推广。这对厘清学科体系,开展科学研究,并将科学和知识在全社会广泛传播,都具有十分重要的意义。
术语众包平台CCFpedia的建设和持续优化,可以有效推进中国计算机术语的收集、审定、规范和传播工作,同时又能起到各领域规范化标准定制的推广作用。
新版的CCFpedia计算机术语平台(http://term.ccf.org.cn)将术语的编辑运营与浏览使用进行了整合,摒弃老版中跨平台操作的繁琐步骤,在界面可观性上进行了升级,让用户能够简单方便地查阅术语信息。同时,新版平台中引入知识图谱的方式对所有术语数据进行组织,通过图谱多层关联的形式升级了术语浏览的应用形态。
计算机术语审定工作委员会 主任: 刘挺(哈尔滨工业大学) 副主任: 王昊奋(同济大学) 李国良(清华大学) 主任助理: 李一斌(上海海乂知信息科技有限公司) 执行委员: 丁军(上海海乂知信息科技有限公司) 林俊宇(中国科学院信息工程研究所) 兰艳艳(清华大学) 张伟男(哈尔滨工业大学)