- TF105:大语言模型技术进展及应用
- TF104:软件工程的复杂性
- TF103:降本增效 架构先行
- TF102:攻击面管理
- TF101:全域营销的数据科学
- TF100:大模型时代下数据智能的应用与前景
- TF98:数字化转型先锋论坛-金融行业实践专场
- TF97:大语言模型时代的知识工程
- TF96:知识图谱赋能时空AI
- TF95:元宇宙系列(三):行业智能化,产业元宇宙来助力
- TF94:NLP技术和产业化发展
- TF93:云原生年度回顾与展望
- TF92:工业机器人柔性控制
- TF91:前端新技术与新实践
- TF90:研发效能度量
- TF89:数智转型 势在必行
- TF87:数据洞察与数据驱动
- TF86:知识图谱赋能智能制造
- TF85:打造公路“头等舱”——智能座舱与交互革命进行时
- TF84质量与效能
- TF83中间件设计:打造互联网架构的基石
- TF82前端与图形学
- TF81工业制造中的数据治理
- TF80云原生安全
- TF77智慧商业,连锁革命
- TF76金融知识图谱构建与应用:进展与展望
- TF75云原生架构演进:降本增效背景下的云原生实践
- TF74产业互联网下的数据科学
- TF73边缘计算不边缘——创新焦点之边缘智能设备和应用
- TF72技术创新驱动企业增长
- TF71 产业变革中的工业互联网安全
- TF70跨模态前沿AI技术及产业应用
- TF69工业制造中的大数据分析和预测
- TF68前端与多媒体
- TF67如何用因果推断和实验驱动用户增长
- TF66大转型,走进农业新时代
- TF65知识图谱开源开放及生态
- TF64量子人工智能:机遇与挑战
- TF63基础架构设计:从架构热点问题到行业变迁
- TF62元宇宙系列(二):数字化底座,万丈高楼平地起
- TF61开发安全与供应链安全
- TF60企业级研发效能提升的实践
- TF59研发效能提升之美
- TF58视觉基础模型研究及应用
- TF57数据安全之流动数据的安全管控
- TF56MBD,开启产品数字化定义新未来
- TF55前端工程体系,告诉你头部企业的新探索
- TF54工程师成长地图与卓越研发组织打造
- TF53预训练时代的大规模知识表示与推理实践
- TF52智慧、融合、安全——智能科技车与路
- TF51畅谈元宇宙的发展与挑战
- TF50工程师文化驱动组织创新
- TF49 产品设计与生产制造协同案例分享与探讨
- TF48云原生时代架构变迁与前瞻
- TF47AI技术落地过程中的实践问题探讨
- TF46数据科学的新发展与数字化转型
- TF45知识图谱新技术、新场景、新应用
- TF44智能驾驶的技术挑战和解决方案
- TF43前端的发展与未来
- TF42区块链DeFi技术新机遇与实战
- TF41云上大数据和数据中台建设
- TF40人机共存,传统行业供给侧服务者赋能技术与系统实战
- TF39语言知识前沿研究与工业实践
- TF38无(少)标注数据在人工智能中的应用
- TF37基于场景的机器人环境理解与智能交互
- TF36工业大数据在智能制造领域的应用与探索
- TF35从数据分析到数据智能
- TF34工业互联网安全前沿与技术热点
- TF33人工智能的下半场—— 知识图谱的新机遇与行业落地
- TF32端到端数据分析系统构建
- TF31智能:前端技术的新挑战
- TF30产业互联网下的数据智能实战解析
- TF29机器视觉技术进展及工业应用
- TF28技术战略转型背后的工程师文化
- TF27零信任网络架构实践 (ZTNA Practice)
- TF26互联网架构中的热点应对
- TF25工业人工智能技术创新与应用
- TF24 仿真工业软件的研究与应用
- TF23AI联邦学习的最新应用落地
- TF22数据驱动
- TF21 认知智能落地中的问题与对策
- TF20 深度学习技术和框架应用
- TF19 未来智能设备的交互技术
- TF18 数据安全与风险防控
- TF17 认知计算产业化落地
- TF16 NewSQL探索与实践
- TF15 Cloud Native 云原生时代的架构
- TF14 联邦学习技术及数据隐私保护
- TF13 大数据时代背景下数字内容生产行业的技术变迁
- TF12 语言认知与知识计算
- TF11 容器化和Service Mesh实践
- TF10 AI在智慧媒体领域的应用
- TF09 人机对话的产业应用与技术发展
- TF08 企业数据安全建设实践
- TF07 大数据在新零售中的应用
- TF06 工程师职业发展及组织文化概况
- TF05 区块链技术与工程实践研讨会
- TF04 纵论AI在问答、机器翻译、自动驾驶、人脸识别中的应用
- TF03 大数据系统与应用
- TF02 人工智能时代的互联网运维
会议主席
段亦涛
本科与硕士毕业于北京航空航天大学,于2007年获UC Berkeley计算机科学专业博士学位,研究方向包括大规模分布式计算,数据挖掘,机器学习,密码学以及安全和隐私。在博士期间加入有道,参与完成有道底层架构,目前任网易有道首席科学家,负责有道技术创新与相关实践工作。主要关注以深度学习为代表的最新AI技术在互联网各个领域的应用,包括机器翻译,图像识别等。主导了有道神经网络机器翻译YNMT等核心技术的研究和开发。
特邀讲者
张广勇
主题报告一:AI技术在教育智能硬件上的应用实践
主题简介:教育智能硬件是智能硬件+教育的融合,教育智能硬件最近几年得到迅速的发展,2020年教育智能硬件市场规模为343亿元,2024年有望接近1千亿元。AI技术是教育智能硬件中的关键技术,然而,智能硬件本地算力和内存等资源有限,落地越来越复杂的AI算法面临了众多的挑战。
本次演讲将首先介绍教育智能硬件面临的挑战——平衡质量、速度、内存、功耗、成本等指标,然后分别从算法和推理两个角度介绍我们常用的优化方法。算法优化将会介绍裁剪模型、共享参数、量化、知识蒸馏等方法。推理优化一是介绍我们自研的开源高性能端侧机器学习计算库EMLL的技术细节以及其在智能硬件中的应用效果,二是分享网易有道探索基于CPU+NPU异构计算平台的端侧AI落地实践。
个人简介:高性能计算研发专家,网易有道AI部门高性能计算技术负责人,10年高性能计算从业经验。曾任浪潮高性能计算研发工程师,负责传统科学计算、机器学习等行业的高性能应用软件的开发和优化工作。后续在某创业公司担任高性能计算架构师,负责CPU+GPU异构平台的分布式数据库研发。
2018年加入网易有道,负责AI平台建设、AI训练性能优化,云侧和端侧NMT、OCR、ASR、TTS等推理引擎实现和性能优化。
袁进辉
主题报告二视频:让大规模分布式深度学习变得更方便:来自OneFlow的方案
主题简介:训练诸如GPT-3这样的超大规模模型需要模型并行、流水并行等现有通用深度学习框架TensorFlow和PyTorch官方版本尚不支持的功能,人们不得不转而寻求各种定制化方案。一个很自然的问题是,是否有可能令通用深度学习框架灵活而高效的支持这些大规模预训练模型所需要的这些技术?OneFlow作为完全从头全新开发的深度学习框架提供了一个答案。借助“一致性视角”的概念,OneFlow可以帮助开发者像单机编程一样方便地开发分布式深度学习训练程序。在这次交流中,我将介绍“一致性视角”背后的核心思想以及新的编程接口,并与定制方案InsightFace, HugeCTR和Megatron-LM进行对比。
个人简介:2008年于清华大学计算机系获得工学博士学位(优秀博士学位论文奖),原微软亚洲研究院主管研究员(院长特别奖获得者),于2017年创立北京一流科技有限公司,致力于打造新一代深度学习框架OneFlow。兼任之江实验室天枢开源开放平台架构师,北京智源人工智能研究院大模型技术委员会委员。
赵一帆
主题报告三视频:端上智能在快手短视频推荐的应用
主题简介:相对于传统的封面瀑布流推荐,上下滑推荐提供了高频交互的沉浸式用户体验。 但是目前基于云计算的推荐系统架构,因网络延迟与云端算力瓶颈,客户端并不能根据每一屏视频反馈即时请求云端更新下一屏的推荐结果。现有成熟的方案采用了传统的分页协议,一次请求云端下发一批推荐结果,客户端也默认按云端推荐顺序展示。
我们引入端上智能,来解决上下滑高频交互推荐的问题,在客户端搭建热部署快速迭代算法策略的推荐引擎框架KIR(Kwai Instant Recommend),使得客户端具备响应用户实时反馈进行实时推荐的能力。 本次演讲会介绍KIR端智能框架与在短视频推荐的一系列应用。
个人简介:毕业于浙江大学, 曾就职于阿里巴巴手淘猜你喜欢团队和拼多多推荐算法团队,从事电商推荐系统、分布式机器学习算法框架研发。现于快手负责端上智能推荐引擎KIR(Kwai Instant Recommend)研发,并在快手短视频推荐与用户增长等业务上取得广泛应用。
吴拓邦
主题报告四:从智能数据到边缘计算-百度AI开发平台技术解析与应用
主题简介:百度AI开发平台以飞桨为核心,提供全流程的AI开发能力,助力企业便捷的构建AI应用。本次分享主要面向数据治理与模型部署两个环节,介绍百度提供的一站式解决方案。
个人简介:百度资深研发工程师,目前就职于百度AI产品研发部,负责百度AI开发平台相关的技术研发工作。
冯星月
主题报告五视频:无人驾驶量产化道路的工程实践
主题简介:图森未来致力于打造可量产的L4级无人驾驶卡车技术,通过计算机视觉、深度学习等 AI 技术,使卡车具备在高速公路等场景下的全无人驾驶能力。这在工程实践中具有很大的技术挑战。
本次演讲将分享图森未来无人驾驶量产化道路的工程实践,介绍 AI 技术在实际落地过程中与产品、场景、业务等真实情况的矛盾,以及图森未来的探索与解决思路。
个人简介:从图森未来应用与基础架构部首位产品经理成长为软件产品负责人,为无人驾驶量产化道路上的研发、离线测试、道路测试全流程提供应用服务支撑。